CERN CH-1211 Geneva 23 Switzerland ISOLDE PROJECT RFQ COOLER AND BUNCHER

CERN Div./Group or Supplier/Contractor Document No.

AB-OP-ISO

EDMS Document No.

Date: 07.02.2003

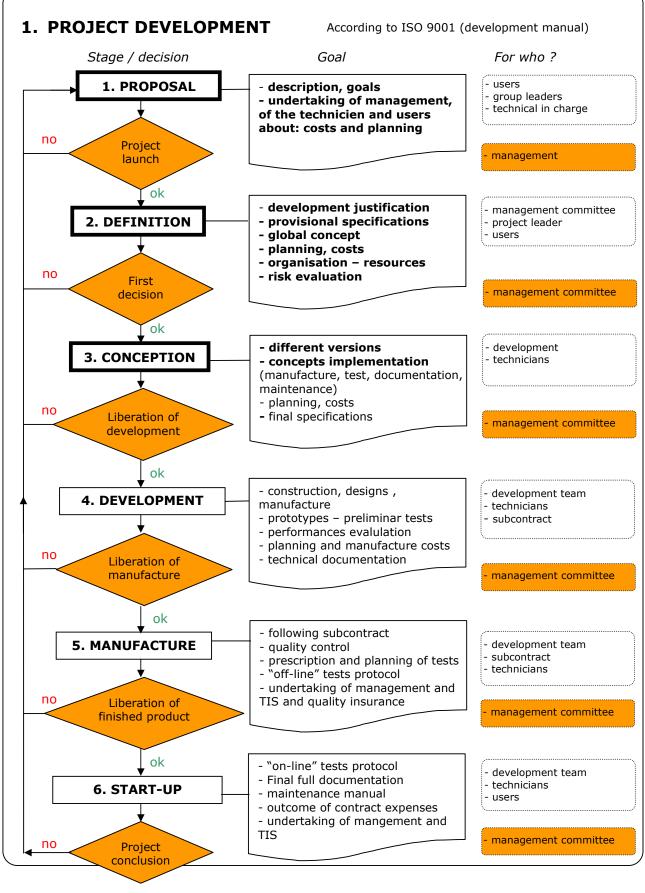
0.10	IFICATIONS (provi	sional)
	DOLER AND BL BEAM LINE SECTION ASSOC	
	Abstract	
energy loss in buffer gas transverse plane. Optiona potential dwell. Then, an experiments at ISOLDE. The a system of turbomulecula and to keep a low pressure The project is to be thoug unless as a project of (operationally and technic world.	poler and buncher for ISOLDE atom-ion collisions with confin- I confinement in longitudinal of improvement of the beam ne RFQ operates inside a high v or pumps both to keep the high e (around 0,1 mbar) inside the F ht not only as a mechanical de research and development, ally) the existing RFQ cooler an ons whole beam line section is project.	ement provided by RF-field in lirection is provided by stati line is achieved for all the oltage cage of 60 kV, and with vacuum before/after the RFC RFQ. sign and construction project since it is about improving ad buncher placed around the
Prepared by :	<i>Checked by :</i> Ari Jokinen	

Amory, I. Podadera, J-P. Royer, F. Wenander

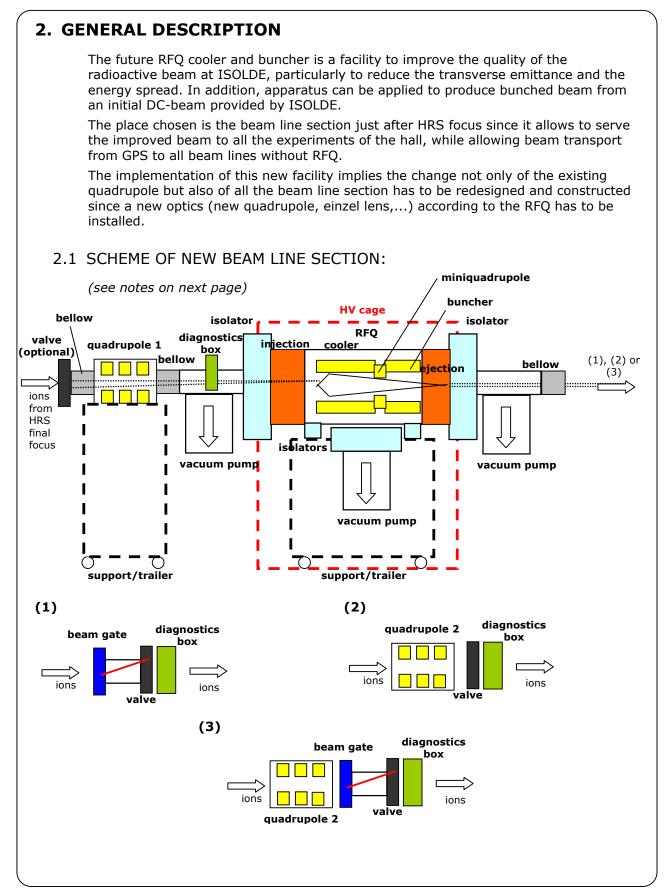
Page 2 of 16

	History of changes							
Rev. No.	Date	Pages	Description of changes					

Page 3 of 16

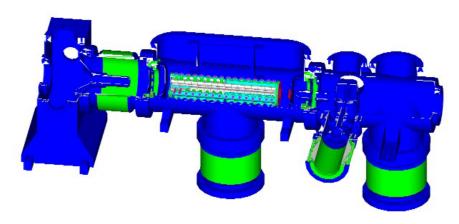

Table of contents

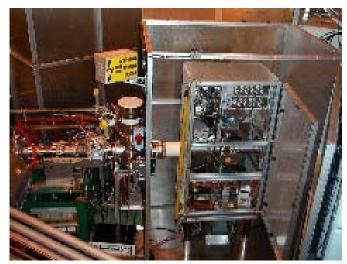
1.	PROJECT DEVELOPMENT4
2.	GENERAL DESCRIPTION5
2.1	SCHEME OF NEW BEAM LINE SECTION:
2.2	EXAMPLES OF RFQ6
2.3	REFERENCES6
3.	TECHNICAL DESCRIPTION7
3.1	RADIOPROTECTION7
3.2	MAINTENANCE7
3.3	SET-UP7
3.4	RFQ COOLER AND BUNCHER7
3.5	QUADRUPOLE 1 (present solution)9
3.6	QUADRUPOLE 29
3.7	VACUUM SYSTEM9
3.8	MEASURE SYSTEM9
3.9	INSULATORS9
3.10	
3.11	
3.12	
3.13	
3.14	ELECTRONIC SYSTEM10
4.	PLANNING11
5.	RESOURCES11
5.1	HUMAN RESOURCES
5.2	FINANCIAL RESOURCES13
6.	ANNEXE 1
6.1	SUGGESTIONS FOR THE CONCEPTION14
6.2	FIRST STUDY


ISOLDE PROJECT

RFQ COOLER AND BUNCHER

Page 4 of 16


OK project finished


Page 6 of 16

<u>Note 1</u>: In case beam gate can be removed or moved to another place at ISOLDE and hadn't enough space for quadrupole 2 (option 3), option 2 will be used. Unless option 1 will have to be used with the quadrupole 2 (option 2) inside the connector flange of the last vacuum pump. <u>Note 2</u>: the miniquadrupole inside the RFQ will be studied during the project. <u>Note 3</u>: whether the valve at the beginning of the it is necessary will be discussed.

2.2 EXAMPLES OF RFQ

RFQ cooler and buncher at Jyväskylä

RFQ cooler and buncher at ISOLTRAP

2.3 REFERENCES

A.Nieminen et al., Nucl. Instr. and Meth. A 469 (2001) 244-253. F. Herfurth et al., Nucl. Instr. and Meth. A 469 (2001) 254-275.

Page 7 of 16

3. TECHNICAL DESCRIPTION

3.1 RADIOPROTECTION

- Dose level low but the risk of contamination of the beam line if beam gate is applied.
- Risk of contamination of vacuum system?

3.2 MAINTENANCE

- structure designed for a minimum maintenance according to the space constraints.
- use of a trailer to permit to take RFQ cooler and buncher with pumps away easily. One could describe required action and give some estimate.
- access to vacuum system as easy as possible, allowing regular service of pumps without disconnection of RFQ from the line.

3.3 SET-UP

- alignment of all the components of the beam line among them and with the sections before and after our beam line.
- easy set-up and removed using bellows and trailers for the quadrupole and the RFQ+pumps guaranteeing the proper alignment.
- use of standards pipes, flanges, screws as much as possible.
- use of flanges ISO-K ϕ 160.
- construction of a guide to come in and out the trailers.
- first construction and "off-line" tests to be done in building 275? to ensure the mechanical ion optical and electrical operation efficiency and safety.
- an ion source will be required during the "off-line" test.

3.4 RFQ COOLER AND BUNCHER

- situated in HV platform surrounded by a HV cage.
- flexibility in respect to possible future reconfiguration of inner parts (diameter between rods, extraction of components).
- operation with mass ion beams between 10÷300.
- injection ions energy: 60 keV \pm 5 eV.
- initial emittance around 20π mm·mrad.
- ejection ions energy: 60 keV \pm 1 eV.
- entry beam intensity $<10^{10}$ ions/s.
- final emittance around 3π mm·mrad.
- efficiency (ions out/in) around 100%.
- frequency of RF field: 1÷5 MHz.
- amplitude RF field:200÷1000 V.
- room temperature 18 °C +/- 2 °C.
- alignment through support.

- the option of using a miniquadrupole between cooler and buncher will be studied during the project. Mechanical design has to take account this future option.
- injection:
 - 3 electrodes.
 - The voltage supply and mechanical support for second and third electrodes are to be from HV side.
 - Ground electrode: hole ϕ 12mm and 3mm wide, entering into the insulator.
 - First electrode: hole ϕ 8mm and 1mm wide.
 - Second electrode: hole ϕ 4mm and 2mm wide.
 - Distance between electrodes: 32mm (ground and first), 18mm (first and second), 12mm (second and cooler entry hole).
 - electrodes support should allow an axial adjustment of a few mm.
- RFQ cavity:
 - Pressure 0,1 mbar or less (more than 0,01 mbar).
 - Axial rods:
 - divided in ~25 segments isolated between them to provide the potential curve of the axial field.
 - the length of every different (1÷4cm) will be different: shorter in the first and last segments.
 - avoiding that the isolation material sees the field inside the RFQ.
 - Potential between 0 and -100 V, referred to HV (60 kV).
 - every group of four rods at the same potential will need one connector and one power supply but between rods 9 and 15 only one power supply could be used.
 - injection plate: hole ϕ 8mm and 6mm wide. Changeable.
 - cooler section:
 - entry ions energy around 100 eV.
 - total length chamber around 800 mm.
 - diameter between rods: 40 mm.
 - buncher section:
 - same cavity or different electrode diameter?
 - last electrodes of the cavity (where ions are bunched).
 - Time between bunches (frequency): 10ms ÷ 1s.
 - Bunches beam intensity: ?.
 - Out hole:?.
 - two ways to eject: just to switch off the potential, or kick (first to increase the potential in the first buncher region and after to switch off).
 - ejection plate: optics to be designed with ejection. Changeable.
- ejection: to be optimized with further calculations and based in tests in off-line test phase => design should guarantee easy change.

RFQ COOLER AND BUNCHER

Page 9 of 16

3.5 QUADRUPOLE 1 (present solution)

- use of a quadrupole triplet, of which only duplet is in use. Thus one may save 15 cm by removing third quadrupole.
- rods of 100mm length with 50mm gap between each other.
- diameter between rods: 80mm.
- focus at 318mm (RFQ injection ground electrode).

3.6 QUADRUPOLE 2

- the optics of the the extraction electrodes and this watching quadrupole is been studying presently.

3.7 VACUUM SYSTEM

- three turbomolecular pumps.
- pumping speeds: 1600 l/s for the main pump and 1000 l/s for the others.
- exhaust pipes from vacuum pumps to environment? (prepumps?).
- possibility of doubling the number of pumps to keep the system in case of breakdown of some pump.
- pressure in the high vacuum around 10⁻⁷ mbar (in reality higher close to injection and extraction).
- helium pressure inside the RFQ cavity around 0,1 mbar.
- helium spent: 10^{-2} mbar·l/s depending on final diameters of injection and extraction aperture.
- gas feeding from helium bottle connected directly to the cooler cavity.
- compatibility with existing ISOLDE vacuum control system.
- decision about the place for the prepumps and helium bottle?.
- baking all the system to avoid charge exchange and loss of ions.
- additional gas purification system maybe required.
- safety switch in case of high pressure danger.
- if double pumping is used, situation of pumps has to be studied (mechanical constraints).

3.8 MEASURE SYSTEM

- before RFQ (using the connector flange for the first vacuum pump).
- after existing final valve (using existing diagnostic box).
- emittance meter (depending on the current new emittance meter project has to study the proper position). Scanner won't be needed if a emittance meter is used.
- faraday cup before the RFQ.
- integration in ISOLDE control system.

3.9 INSULATORS

- insulation of 60 kV between RFQ and pipes and between RFQ and support/trailer.
- mechanical strength guaranteed.
- easily clean.

Page 10 of 16

3.10 CONNECTORS AND WIRING

- use of standard flexible connectors.
- problem with electrode connections when one wants to remove the RFQ inside cavity. One should study possibilities to use integrated feedthroughs (UHV, RF compatible): 3 RF connectors X, 3 RF connectors Y and 25 DC connectors.

3.11 HIGH VOLTAGE CAGE

- safety distance between the HV cage and walls (ground element): ?
- safety switch (automatic switch off HV if someone breaks into HV cage).
- vacuum safety switch (HV down in case of high pressure).

3.12 BELLOWS AND VALVES

- bellows should permit easily the removal of all the components.
- use of standard bellows.
- existing valve at the end of the beam line section will be kept.

3.13 CONTROL SYSTEM

- RF electronics + RFQ DC power suppliers in HV voltage: remote control mandatory.
- possibility to install this HV components inside the HV cage where is the RFQ or in another HV cage in another place.
- full compatibility with ISOLDE control system.
- **main** parameters to control:
 - vacuum system (pumping speeds, pressure inside RFQ (correcting readout of gas feeding), gas feed, pressure at injection and ejection).
 - RF voltage (frequency?, amplitude?).
 - DC voltages.
 - diagnostics (emittance, beam X-Y correction,...).

3.14 ELECTRONIC SYSTEM

power supply:

- operational voltage >60 kV.
- stability: 10⁻⁵·60 kV=0,6 V.
- line power 220/230 V.
- isolation transformer:
 - voltage: 220/230 V.
 - low power.
 - voltage rate: 60 kV.
- 60 kV fast switch.
- RF field provided by a function generator:
 - amplitude: 0÷1 kV (0 to peak).
 - frequency: 100 kHz+ 5 MHz.
- 25 DC power supplies 0÷200 V.

Page 11 of 16

4. PLANNING

According to stages of chapter 1.

Stage							20	03											2	202	1					20	05
		j	f	m	а	m	j	j	а	s	0	n	d	j	f	m	а	m	j	j	а	s	0	n	d	j	f
1	PROPOSAL																										
2	DEFINITION																										
3	CONCEPTION																										
	-First drawings		-		-	-	-			-	-																
	-Variants																										
4	DEVELOPMENT																										
	-Drawings												· ·														
	-Assembly																										
5	MANUFACTURE																										
	-Tests off-line																	l '									
6	START-UP																										
	-Beam line assembly during shutdown																										
	-Tests on-line																										

5. RESOURCES

5.1 HUMAN RESOURCES

The development team is made up of:

	Role:	Nom:	person/year
Management team	 strategic undertakings resources definition financing liberation of stages 	M.Lindroos	2% ?
Project Leader	 writing specifications coordination following project, delays and budget organisation of meetings, protocols 	A. Jokinen, T. Fritioff	5+5%
Mechanical engineer	 first designs proposal of variations mechanical study 	J. Pier- Amory, I. Podadera	20+ 40%?

ISOLDE PROJECT

RFQ COOLER AND BUNCHER

	 dimensioning choice of components orders and following of manufacture and set-up 		
Mechanical designer	- manufacture designs	J. Pier- Amory, I. Podadera	10+30%?
Physicist	 calculations, optimization RFQ (RF voltage, DC voltage, vacuum,) beam line optics proposal of variations 	A. Jokinen, T. Fritioff, I. Podadera, F. Wenander	8+4+4+4% ?
Electric engineer	 check of wiring scheme choice and order of components (wires, connectors) following of orders and wiring 	A. Jokinen, T. Fritioff, I. Podadera, J- P. Royer	4+2+2+2% ?
Vacuum engineer	 vacuum system study dimensioning proposal of variations choice and order of components following the set-up and wiring 	A.Jokinen, T. Fritioff, S. Meunier, I. Podadera	5+5+5+59 ?
Measure system technician	 mechanical study, electric proposal of variations following the manufacture and set- up 	I. Podadera, A. Jokinen, T. Fritioff	4+4+2% ?
Control system	-	A. Jokinen, I. Podadera, T. Fritioff, F. Locci	4+2+2+2%

Besides people named above, we will need the advices and contributions of specialist under the following fields:

- users (engineers in charge, experienced physicists) V. Fedosseev, R. Catherall, T. Nilsson
- vacuum technicien E. Mahner, R. Gapihan
- metallurgy, materials S. Sgobba, G. Izquierdo
- radioprotection T. Otto, A. Muller, A. Dorsival
- mechanical engineering S. Marzari
- mechanical fabrication (workshop) E. Barbero, J.M. Geisser, M. Blanc
- high voltage T. Fowler
- radiofrequency M. Vretenar

Page 13 of 16

- alignment C. Lasseur
- several suppliers
- etc...

5.2 FINANCIAL RESOURCES

ISCC. Application BMBF (Germany).

Page 14 of 16

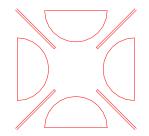
6. ANNEXE 1

6.1 SUGGESTIONS FOR THE CONCEPTION

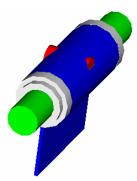
SET-UP	PROBLEM	CONSTRAINT	POSSIBLE SOLUTIONS
	space	Walls	 use of trailer for heavy components (RFQ cooler and buncher and quadrupole 1). Only 3 pumps instead of 6. Remove existing pumps
		Length beam line	Combining components
	Alignment system	Length beam line	Alignment with 3 points
			Angrintene wien 5 points
RFQ COOLER AND BUNCHER	PROBLEM	CONSTRAINT	POSSIBLE SOLUTIONS
	Design outside insulators	High voltage and length	
	Design inner insulators	Distance between high voltage electrodes and cannot "see" the electric field	
	Design injection/ejection	Distance between ground electrode and HV electrode	
	Design electrodes and cavity	Mechanical flexibility	 Four segmented rods (combining RF and DC field => complex electronics)
			 Four RF rods and four DC axial segmented rods (45° with RF rods) The RF rods will be also segmented in 3 parts with two flanges (flexibility to put a miniquadrupole between flanges).
BEAM GATE	PROBLEM	CONSTRAINT	POSSIBLE SOLUTIONS
SLAFI GATE	Space	Length	Remove fully or to move to other place
	PROBLEM	CONSTRAINT	POSSIBLE SOLUTIONS
QUADRUPOLE 1			

ISOLDE PROJECT

RFQ COOLER AND BUNCHER


Page 15 of 16

VACUUM SYSTEM	PROBLEM	CONSTRAINT	POSSIBLE SOLUTIONS
	Keep radioactive pumps	Supplier	Use Pfeiffer or Alcatel
	Breakdown of the pumps	Number of pumps	Doubling the number of pumps (problem with the space)
MEASURE SYSTEM	PROBLEM	CONSTRAINT	POSSIBLE SOLUTIONS
	Emittance meter	Dimensions	Project of new emittance meter
INSULATORS	PROBLEM	CONSTRAINT	POSSIBLE SOLUTIONS
	Fragility	Mechanical strngth	
ASSEMBLY	PROBLEM	CONSTRAINT	POSSIBLE SOLUTIONS
	Alignment		
MAINTENANCE	PROBLEM	CONSTRAINT	POSSIBLE SOLUTIONS
	Access to quadrupole 1 and first vacuum pump		
RADIOPROTECTION	PROBLEM	CONSTRAINT	POSSIBLE SOLUTIONS
ELECTRIC PART	PROBLEM	CONSTRAINT	POSSIBLE SOLUTIONS
	Connection between electrodes and RFQ to remove RFQ cavity	Number of connectors	Use of a preconnection flange


Page 16 of 16

6.2 FIRST STUDY

Some solutions for RFQ inner part are showed in the first study below which will be able to be useful **as basis in the discussions**:

Combination of RF electrodes and axial electrodes

Proposal for separated axial electrodes