

RFQ cooler and buncher project for ISOLDE

Present status and off-line test results

By: Hanna Frånberg Presented by: Luis Mario Fraile

Why an RFQ CB for ISOLDE

- Reduced transverse emittance
- Reduced energy spread
- Beam bunching capability

For a wide range of masses Relatively fast cooling (< ms)

Examples for applications

- Injection into mass spectrometers
 e.g. ISOLTRAP, MISTRAL, JYFLTRAP
- Laser spectroscopy – COLLAPS, JYFL
- Injection into mass separators
 HRS of ISOLDE, EURISOL

Installation of RFQ

Where at ISOLDE

Cartoon of the RFQ installation main vacuum chamber bellow diagnostic box gate valve gate valve HV **HV** insulator insulator diagnostic box bellow **RIB** from HRS extraction guadrupole injection quadrupole triplet triplet

ection quadrupole triplet triplet turbopump turbopump

RFQ Cooler technique

- RF for radial confinement
- DC Segments for axial trapping
- Gas for cooling

Aims of the off-line tests

- Transmission efficiency
 - As a function of the mass
 - Alkali ions Li,Na, K, Cs
 - Ar / noble gases from a FEBIAD source
 - CW and pulsed mode
- Beam quality improvements
 - Emittance measurements
 - Time and energy spread of the bunches
- Specific issues
 - Space charge limit with bunched beams
 - Recombination of noble gases with impurities

ISCOOL off-line tests

• RFQ • RF Oscillator Test ion source 2 FCs for diagnostics Quadrupole **Triplet**

Optimized transmissions

lon cooling

CW mode

Element	Emittance
lon source	>35 π•mm•mrad
Without cooling	>35 π•mm•mrad
With cooling	ε ₉₅ = 2.2 π•mm•mrad
Cs	60% transmission
Na	ε ₉₅ =2.95 π•mm•mrad
	23 % transmission
39-K RF ptp voltage influence on transmission and emittance	
. <u>م</u> 5.00 -	50% • + 40% ج
- 00.4 mrac	→ 30% .S
11 E 3.00 -	
2.00	0%

RF Voltage ptp [V]

When optimizing the buffer gas pressure or the RF voltage the emittance decreases as transmission efficiency increases

Emittance measurements

KV-plane 4 mm mrad emittance after the RFQ with 50 % transmission

2 mm mrad in emittance in the KVplane after the RFQ with 60 % transmission

33 mm mrad emittance in the KV plane directly from the ion source

Bunched beams

- Preliminary tests with Na ions
 - Transmission close to CW operation (>20%)
 - Space charge limits in transmission efficiency not seen up to 10⁶-10⁷ ions/bunch
 - BUT: long bunches >50µs
 - may be due to the (too) simple extraction scheme adopted up to now – pulsing of the extraction plate only

Next steps

- Off-line commissioning
 - Tests with a FEBIAD ion source (Ar)
 - ISOLDE-like ion source
 - Charge recombination in the buffer gas?
 - Tests of the bunching mode with a better extraction scheme
 - Pulsing the extraction plate and the last segments of the buncher
- Installation
 - HV platform next June
 - Installation of the RFQ October