

ISCOOL: cooled and bunched beams for ISOLDE

E. Mané, ¹ P. Delahaye, ² I. Podadera, ² M. Lindroos, ² R. Catherall, ² T. Giles, ²H. Franberg, ²J. Billowes, ¹ F. Duval ³ and A. Jokinen ⁴ ¹ Schuster Laboratory, University of Manchester, United Kingdom ² CERN, CH-1211 Geneva 23, Switzerland ³ ISMRA, Caen, France ⁴ Department of Physics, University of Jyväskylä, Finland

Presenter: Ernesto Mané

Outline

- Motivation
- Scheme of ISCOOL
- How it works
- Off-line tests and results
- Next steps
- New opportunities
- Summary
- Conclusions

Motivation

Increasing demand for

- a better beam quality matching downstream the acceptance of the experiments;
- a more efficient use of the HRS beam line;
- being able to manipulate radioactive ion beams.

The ISOLDE cooler is a radio-frequency quadrupole cooler and buncher (RFQCB) designed to meet those needs.

Because it can

- reduce the beam emittance and energy spread;
- control the time structure of the beam.

Scheme of ISCOOL

Scheme of ISCOOL

How it works:cooling

How it works: RFQ confinement

How it works: bunching

Off-line tests

They aim at a complete characterisation prior to the installation of ISCOOL:

- Behaviour of vacuum, electronics and high voltage;
- Tests in continuous mode;
- Tests in bunched mode.

They have started in 09/2005 at building 275 in a dedicated test bench.

E. Mané and P. Delahaye

Test bench

ISOLDE workshop and users meeting 2006/2007

10/19

Results

Transmission in continuous mode

Results

No cooling, emittance 4π mm.mrad

Area of the ellipse = 7.89π mm.mrad Emittance RMS (1 σ) = 4.29π mm.mrad^{Number} of hits in the ellipse = 49171

10pA of ¹³³Cs at 30KeV No buffer gas cooling x% transmission

Where is this value from??

Cooled beam, emittance 2π mm.mrad

70pA of ¹³³Cs at 30KeV He flow of 8X10⁻¹ mbar I/s X% transmission

ISCOOL acceptance

40

The emittance at the exit of the RFQ is \sim independent of the incoming beam.

ISOLDE

20

ISOLDE workshop and users meeting 2006/2007

Δ

Next steps

Concerning the off-line commissioning, we should

- Finish the tests with the alkalis, in continuous and bunched modes;
- Extend the tests to other elements with an ISOLDE plasma ion source.

Next steps

On-line commissioning H. Franberg

- RFQ alignment (+- 1mm)
- Integration of vacuum
- High voltage platform
- High voltage cage
- Controls

New opportunities for laser spectroscopy

Techniques:

- Conventional fluorescence-detection methods;
- Collinear Resonance Ionization Spectroscopy (CRIS).

The cooler also offers a convenient environment for:

- performing optical pumping of ions;
- preparing ions in metastable state;

Ref to Jyväskylä

producing polarised or aligned nuclear beams.

Example: Collinear laser technique + bunched ions

K. Flanagan et. al. Laser spectroscopy of radioactive copper isotopes. IS439

J. Billowes et. al. Laser spectroscopy of gallium isotopes using the ISCOOL RFQ cooler. CERN-INTC-2007-005

Summary

With ISCOOL at <u>30 keV</u> and rf at 260 KHz, $480V_{p-p}$, the following preliminary results were accomplished so far for ¹³³Cs :

- Greater than <u>70% efficiency</u> in continuous mode;
- Transverse emittance ~ 2-4 π mm mrad;
- Energy spread of <u>1.3 eV</u>

Conclusions

- The off-line tests so far suggest that ISCOOL will work as expected;
- The best efforts have been put to place it on-line ASAP (September 2007);
- And finally

The use of ISCOOL in conjunction with other techniques will enable us to further push the limits of the detection of radioactive nuclear beam observables.

Thank you for your attention